
Application Note | Case Study | Technology Primer | White Paper

Property of Teledyne DALSA. Not for publication or reproduction without permission.

Copyright © 2021 Teledyne DALSA. All Rights Reserved.

continued >

Advances in AI for Industrial
Inspections
The manufacturing industry is being turned on its head as
AI, and deep learning transforms the way we create goods
and how quality inspection is employed. The combination of
software, new deep learning techniques, power of parallel
processing, and ease-of-use tools is at the core of this
transformation.

While traditional image-processing software relies on task-
specific algorithms, deep learning software uses a multilayer
network implementing pre-trained or user-trained algorithms
to recognize good and bad images or regions. Traditionally,
hundreds, or even thousands, of high-quality, manually
classified images were required to train the system and
create a model that classifies objects with a high degree of
predictability. Just gathering this type of dataset has proven
to be an obstacle, hindering deep learning adoption into
mainstream manufacturing environments.

New technology advancements are making it easier for
manufacturers to embrace deep learning as part of the
inspection process. Today, we train deep learning systems
with fewer bad images or even none. While deep learning
software for machine vision has been around for more than a
decade, it is now becoming more user-friendly and practical.
As a result, manufacturers are moving from experimenting
with deep learning software to implementing it.

Deep Learning vs. Traditional Methods
Deep learning is ideal for tasks that are difficult to achieve with
traditional image processing methods. Typical environments
that are suitable for deep learning are those where there is
a lot of variables, such as lighting, noise, shape, color, and
texture. For example, in food inspection, no two loaves of
bread are exactly alike. Each loaf has the same ingredients,
and each weighs the same amount, but the shape, color, and
texture may be slightly different but still within the range of
normality.

Another example may be the ripeness of an apple. Ripeness
could mean color, softness, or texture; however, there is a
range of possibilities where an apple is considered ripe. It is
in these types of environments where deep learning shines.
Other examples are inspecting the surface finish quality,
confirming the presence of multiple items in a kit, detecting
foreign objects, and more, to ensure quality throughout the
assembly process.

A practical example showing the strength of deep learning
is scratch inspection on textured surfaces like metal. Some
of those scratches are less bright, and their contrast is
in the same order of magnitude than that of the textured
background itself. Traditional techniques usually fail to locate
these types of defects reliably, especially when the shape,
brightness, and contrast vary from sample to sample. Figure
1 illustrate scratches inspection on metal sheets. Defects are
clearly shown via a heatmap which is a pseudo-color image
highlighting the pixels at the location of the defect.

Figure 1 – Surface Inspection on Brushed Metal
Left: A plate of brushed metal with scratches (encircled).
Right: The heatmap output of a classification algorithm
showing the defects.

Another example of defect inspection is the ability to classify
a complex part as being good or bad. For instance metal
screws are objects presenting a high degree of variation
on their surface making it extremely difficult for traditional
algorithms to isolate defects. Deep learning algorithms are
very good at inspecting those type of objects as shown in
Figure 2.

Figure 2 – Inspection of Damaged Screws
Top left: A perfect screw.
Top right: A bad screw with damaged section encircled.
Bottom middle: The heatmap output of a classification
algorithm showing the defect.

http://www.teledynedalsa.com/en/home/

Application Note | Case Study | Technology Primer | White Paper

Property of Teledyne DALSA. Not for publication or reproduction without permission.

Copyright © 2021 Teledyne DALSA. All Rights Reserved.

continued >

Defect Detection Using Simple Classification
Despite the advantage of deep learning over traditional image
processing techniques, challenges do exist. First, many users
lack the understanding of what is required to achieve success
with deep learning. Second, until recently, deep learning
required a huge data set to train a system. Many applications
have not been able to take advantage of deep learning due
to the lack of high quality, manually classified images. In the
case where a large data set is available, the next challenge
is to label each image. This labeling can be a daunting task
because it has to be done by an expert and needs to be
error-free. The cases where there is a large number of classes
(different groups with a unique label for each) become prone
to errors.

Subtle labeling errors are one reason for failure to reach
satisfactory performance from AI tools. It is painful to realize
the amount of wasted time involved before realizing that the
failure is due to bad labeling in the original data set. The fact is
that a proper data set is the most important item in a particular
system and is usually treated as proprietary IP by the user.

Typical deep learning applications require hundreds or even
thousands of image samples. In more challenging or custom
applications, the training model may require up to a million
or more image samples. Even if you can get enough images,
you have to ensure you have the right mix of “good” and
“bad” images to meet the parameters of the training model.
To achieve the expected results from the training model, you
need a balanced data set. This type of training that uses both
good and bad examples is called defect detection and is
considered a simple classifier.

To verify if the training model is accurate, you need to test the
model with a new set of images. If the model achieves close
to the training set model, it is said that the model generalized
well. In the case where the model does poorly on the test
set, this tends to reflect that the model remembers all training
cases and has not learned what makes an image good or bad
and is known as overtraining or overfitting. If the test set does
better, then the training set is suspicious (perhaps due to a
poor distribution), or the test set is too small. This method is
called supervised learning.

A New Deep Learning Technique:
Anomaly Detection
Some applications may only have good examples. In many
production environments, we see what is acceptable but can
never be sure of all possible cases which could cause rejects.

There are cases where there is a continuous event of unique
new rejects that can occur at very low rates but are still not
acceptable. These types of applications could not deploy
deep learning effectively due to the lack of bad examples.
That is no longer true. New tools have enabled manufacturers
to expand the applications that benefit from deep learning.

There is a new technique for classification called anomaly
detection, where only good examples train a network. In this
case, the network recognizes what is considered normal and
identifies anything outside that data set as abnormal. If you
were to put the “good example” data set on a graph, it would
look like a blob. Anything that falls within the blob classifies
as normal, and anything that falls outside the blob classifies
as abnormal — an anomaly. The previous examples shown
in Figure 1 and Figure 2 are both solvable with anomaly
detection in situations where just a few or even no bad
samples are available for training.

Available today, anomaly detection tools enable the
expansion of deep learning into new applications that could
not take advantage of its benefits previously. The inclusion
of anomaly detection helps to reduce engineering efforts
needed to train a system. If they have the data, non-experts
in image processing can train systems while reducing
costs significantly. Teledyne DALSA’s AstrocyteTM software
is a training tool based on Deep Learning algorithms that
includes classification, anomaly detection, object detection,
segmentation and noise reduction.

Figure 3 – AstrocyteTM Software from
Teledyne DALSA

http://www.teledynedalsa.com/en/home/

Application Note | Case Study | Technology Primer | White Paper

Property of Teledyne DALSA. Not for publication or reproduction without permission.

Copyright © 2021 Teledyne DALSA. All Rights Reserved.

continued >

Implementing Deep Learning for Defect Detection
Whether using a simple classifier or anomaly detection
algorithm for implementing detect detection in manufacturing
environments, one must train the neural network with a
minimal set of samples. As mentioned previously, anomaly
detection allows an unbalanced dataset, typically including
many more good samples than bad samples. But regardless
of how balanced, these samples need to be labeled as good
or bad and fed into the neural network trainer. GUI-based
training tools such as AstrocyteTM are an easy way to feed your
dataset to the neural network while allowing you to label your
images graphically.

Figure 4 below illustrates classification training in AstrocyteTM
where all samples are listed as thumbnails. For each sample,
the rectangle around the thumbnail specifies the label
(i.e., good or bad) and this information is editer by the user
at training time. One easy way to automate this process is to
put the samples in two different folders (good and bad) and
use the folder names as labels. Another important aspect
to consider when training a dataset is to reserve a portion
of these samples for testing. One good rule in practice is
to allocate 80% of the dataset for training while leaving the
remaining 20% for testing, as seen in Figure 4 as the Train/
Dataset Ratio %. When the training samples pass through the
neural network, the weights of the neural network adjust for
a certain number of iterations called epochs. Unlike training
samples, testing samples are passed through the neural
network for testing purposes without affecting the weights
of the network. Training and testing groups of samples are
important to develop a proper training model that will perform
well in production.

Figure 4 – Training and Labeling

Once the training set is created and labeled, the training
process can begin. Training parameters are called
Hyperparameters (as opposed to “parameters,” which are
the actual weights of the neural network). Most common
hyperparameters include the learning rate which tells the
algorithm how fast to converge to a solution, the number of
epochs which determines the number of iterations during
the training process, the batch size which selects how
many samples are processed at a time, and the model
architecture that is selected to solve the problem. A common
example of model architecture for a simple classification is
ResNet, which is a Convolutional Neural Network, a frequently
used model architecture in classification problems such as
defect detection.

Once hyperparameters are configured (good training tools
provide default values which work well in practice), the
training process is ready to be launched. Training time ranges
from a few minutes to a few hours and is dependent on the
number of samples in your dataset, the hyperparameters, and
the power/memory of your GPU card. During training, you
can monitor two basic metrics: loss functions and accuracy.
The loss functions show the difference between current
model prediction (output of neural network) and expectation
(the ground truth). These loss functions should go toward
0 while training. If they diverge, you may have to cancel the
training session and restart it with different hyperparameters.
The accuracy tells you how good your model is to properly
classify samples. This metric should go toward 100% during
training. In practice, you will rarely achieve 100% but often
between 95% and 99%. Figure 5 depicts a graph of loss
functions and accuracy while training in AstrocyteTM.

Figure 5 – Loss Functions and Accuracy
Left: loss functions (train and validation).
Right: accuracy measure (called f1).

http://www.teledynedalsa.com/en/home/

Application Note | Case Study | Technology Primer | White Paper

Property of Teledyne DALSA. Not for publication or reproduction without permission.

Copyright © 2019 Teledyne DALSA. All Rights Reserved.

www.teledynedalsa.com

Teledyne DALSA has its corporate offices in Waterloo, Canada
Teledyne DALSA reserves the right to make changes at any time without notice. Teledyne DALSA © 2021.

Americas

Boston, USA

+1 978-670-2000

sales.americas@teledynedalsa.com

Europe

Krailling, Germany

+49 89-89-54-57-3-80

sales.europe@teledynedalsa.com

Asia Pacific

Tokyo, Japan

+81 3-5960-6353

sales.asia@teledynedalsa.com

Shanghai, China

+86 21-3368-0027

sales.asia@teledynedalsa.com

After training is complete with acceptable accuracy, your
model is ready to use in production. Applying a model to real
samples is called inference. Inference can be implemented
on the PC using GPU cards or on an embedded device using
a parallel processing engine. Depending on the size, weight,
and power (SWAP) required by your application, various
technologies are available for implementing deep learning on
embedded devices such as GPUs, FPGAs and specialized
neural processors.

Deep learning is more user-friendly and practical than ever
before, enabling more applications to derive the benefits.
Deep learning software has improved to the point that it can
classify images better than any traditional algorithm — and
may soon be able to outperform human inspectors.

http://www.teledynedalsa.com/en/home/

