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Advances in AI for Industrial 
Inspections
The manufacturing industry is being turned on its head as 
AI, and deep learning transforms the way we create goods 
and how quality inspection is employed. The combination of 
software, new deep learning techniques, power of parallel 
processing, and ease-of-use tools is at the core of this 
transformation.

While traditional image-processing software relies on task-
specific algorithms, deep learning software uses a multilayer 
network implementing pre-trained or user-trained algorithms 
to recognize good and bad images or regions. Traditionally, 
hundreds, or even thousands, of high-quality, manually 
classified images were required to train the system and 
create a model that classifies objects with a high degree of 
predictability. Just gathering this type of dataset has proven 
to be an obstacle, hindering deep learning adoption into 
mainstream manufacturing environments.

New technology advancements are making it easier for 
manufacturers to embrace deep learning as part of the 
inspection process. Today, we train deep learning systems 
with fewer bad images or even none. While deep learning 
software for machine vision has been around for more than a 
decade, it is now becoming more user-friendly and practical. 
As a result, manufacturers are moving from experimenting  
with deep learning software to implementing it. 

Deep Learning vs. Traditional Methods
Deep learning is ideal for tasks that are difficult to achieve with 
traditional image processing methods. Typical environments 
that are suitable for deep learning are those where there is 
a lot of variables, such as lighting, noise, shape, color, and 
texture. For example, in food inspection, no two loaves of 
bread are exactly alike. Each loaf has the same ingredients, 
and each weighs the same amount, but the shape, color, and 
texture may be slightly different but still within the range of 
normality.

Another example may be the ripeness of an apple. Ripeness 
could mean color, softness, or texture; however, there is a 
range of possibilities where an apple is considered ripe. It is 
in these types of environments where deep learning shines. 
Other examples are inspecting the surface finish quality, 
confirming the presence of multiple items in a kit, detecting 
foreign objects, and more, to ensure quality throughout the 
assembly process.

A practical example showing the strength of deep learning 
is scratch inspection on textured surfaces like metal. Some 
of those scratches are less bright, and their contrast is 
in the same order of magnitude than that of the textured 
background itself. Traditional techniques usually fail to locate 
these types of defects reliably, especially when the shape, 
brightness, and contrast vary from sample to sample. Figure 
1 illustrate scratches inspection on metal sheets. Defects are 
clearly shown via a heatmap which is a pseudo-color image 
highlighting the pixels at the location of the defect.

Figure 1 – Surface Inspection on Brushed Metal
Left: A plate of brushed metal with scratches (encircled).
Right: The heatmap output of a classification algorithm 
showing the defects.

Another example of defect inspection is the ability to classify 
a complex part as being good or bad. For instance metal 
screws are objects presenting a high degree of variation 
on their surface making it extremely difficult for traditional 
algorithms to isolate defects. Deep learning algorithms are 
very good at inspecting those type of objects as shown in 
Figure 2. 

Figure 2 – Inspection of Damaged Screws
Top left: A perfect screw.
Top right: A bad screw with damaged section encircled.
Bottom middle: The heatmap output of a classification 
algorithm showing the defect.
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Defect Detection Using Simple Classification
Despite the advantage of deep learning over traditional image 
processing techniques, challenges do exist. First, many users 
lack the understanding of what is required to achieve success 
with deep learning. Second, until recently, deep learning 
required a huge data set to train a system. Many applications 
have not been able to take advantage of deep learning due 
to the lack of high quality, manually classified images. In the 
case where a large data set is available, the next challenge 
is to label each image. This labeling can be a daunting task 
because it has to be done by an expert and needs to be 
error-free. The cases where there is a large number of classes 
(different groups with a unique label for each) become prone 
to errors. 

Subtle labeling errors are one reason for failure to reach 
satisfactory performance from AI tools. It is painful to realize 
the amount of wasted time involved before realizing that the 
failure is due to bad labeling in the original data set. The fact is 
that a proper data set is the most important item in a particular 
system and is usually treated as proprietary IP by the user. 

Typical deep learning applications require hundreds or even 
thousands of image samples. In more challenging or custom 
applications, the training model may require up to a million 
or more image samples. Even if you can get enough images, 
you have to ensure you have the right mix of “good” and 
“bad” images to meet the parameters of the training model. 
To achieve the expected results from the training model, you 
need a balanced data set. This type of training that uses both 
good and bad examples is called defect detection and is 
considered a simple classifier. 

To verify if the training model is accurate, you need to test the 
model with a new set of images. If the model achieves close 
to the training set model, it is said that the model generalized 
well. In the case where the model does poorly on the test 
set, this tends to reflect that the model remembers all training 
cases and has not learned what makes an image good or bad 
and is known as overtraining or overfitting. If the test set does 
better, then the training set is suspicious (perhaps due to a 
poor distribution), or the test set is too small. This method is 
called supervised learning.

A New Deep Learning Technique:
Anomaly Detection
Some applications may only have good examples. In many 
production environments, we see what is acceptable but can 
never be sure of all possible cases which could cause rejects. 

There are cases where there is a continuous event of unique 
new rejects that can occur at very low rates but are still not 
acceptable. These types of applications could not deploy 
deep learning effectively due to the lack of bad examples. 
That is no longer true. New tools have enabled manufacturers 
to expand the applications that benefit from deep learning.

There is a new technique for classification called anomaly 
detection, where only good examples train a network. In this 
case, the network recognizes what is considered normal and 
identifies anything outside that data set as abnormal. If you 
were to put the “good example” data set on a graph, it would 
look like a blob. Anything that falls within the blob classifies 
as normal, and anything that falls outside the blob classifies 
as abnormal — an anomaly. The previous examples shown 
in Figure 1 and Figure 2 are both solvable with anomaly 
detection in situations where just a few or even no bad 
samples are available for training. 

Available today, anomaly detection tools enable the 
expansion of deep learning into new applications that could 
not take advantage of its benefits previously. The inclusion 
of anomaly detection helps to reduce engineering efforts 
needed to train a system. If they have the data, non-experts 
in image processing can train systems while reducing 
costs significantly. Teledyne DALSA’s AstrocyteTM software 
is a training tool based on Deep Learning algorithms that 
includes classification, anomaly detection, object detection, 
segmentation and noise reduction.

Figure 3 – AstrocyteTM Software from  
Teledyne DALSA
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Implementing Deep Learning for Defect Detection
Whether using a simple classifier or anomaly detection 
algorithm for implementing detect detection in manufacturing 
environments, one must train the neural network with a 
minimal set of samples. As mentioned previously, anomaly 
detection allows an unbalanced dataset, typically including 
many more good samples than bad samples. But regardless 
of how balanced, these samples need to be labeled as good 
or bad and fed into the neural network trainer. GUI-based 
training tools such as AstrocyteTM are an easy way to feed your 
dataset to the neural network while allowing you to label your 
images graphically. 

Figure 4 below illustrates classification training in AstrocyteTM 
where all samples are listed as thumbnails. For each sample, 
the rectangle around the thumbnail specifies the label  
(i.e., good or bad) and this information is editer by the user 
at training time. One easy way to automate this process is to 
put the samples in two different folders (good and bad) and 
use the folder names as labels. Another important aspect 
to consider when training a dataset is to reserve a portion 
of these samples for testing. One good rule in practice is 
to allocate 80% of the dataset for training while leaving the 
remaining 20% for testing, as seen in Figure 4 as the Train/
Dataset Ratio %. When the training samples pass through the 
neural network, the weights of the neural network adjust for 
a certain number of iterations called epochs. Unlike training 
samples, testing samples are passed through the neural 
network for testing purposes without affecting the weights 
of the network. Training and testing groups of samples are 
important to develop a proper training model that will perform 
well in production.

Figure 4 – Training and Labeling

Once the training set is created and labeled, the training 
process can begin. Training parameters are called 
Hyperparameters (as opposed to “parameters,” which are 
the actual weights of the neural network). Most common 
hyperparameters include the learning rate which tells the 
algorithm how fast to converge to a solution, the number of 
epochs which determines the number of iterations during 
the training process, the batch size which selects how 
many samples are processed at a time, and the model 
architecture that is selected to solve the problem. A common 
example of model architecture for a simple classification is 
ResNet, which is a Convolutional Neural Network, a frequently 
used model architecture in classification problems such as 
defect detection. 

Once hyperparameters are configured (good training tools 
provide default values which work well in practice), the 
training process is ready to be launched. Training time ranges 
from a few minutes to a few hours and is dependent on the 
number of samples in your dataset, the hyperparameters, and 
the power/memory of your GPU card. During training, you 
can monitor two basic metrics: loss functions and accuracy. 
The loss functions show the difference between current 
model prediction (output of neural network) and expectation 
(the ground truth). These loss functions should go toward 
0 while training. If they diverge, you may have to cancel the 
training session and restart it with different hyperparameters. 
The accuracy tells you how good your model is to properly 
classify samples. This metric should go toward 100% during 
training. In practice, you will rarely achieve 100% but often 
between 95% and 99%. Figure 5 depicts a graph of loss 
functions and accuracy while training in AstrocyteTM.

Figure 5 – Loss Functions and Accuracy
Left: loss functions (train and validation). 
Right: accuracy measure (called f1).
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After training is complete with acceptable accuracy, your 
model is ready to use in production. Applying a model to real 
samples is called inference. Inference can be implemented 
on the PC using GPU cards or on an embedded device using 
a parallel processing engine. Depending on the size, weight, 
and power (SWAP) required by your application, various 
technologies are available for implementing deep learning on 
embedded devices such as GPUs, FPGAs and specialized 
neural processors.

Deep learning is more user-friendly and practical than ever 
before, enabling more applications to derive the benefits. 
Deep learning software has improved to the point that it can 
classify images better than any traditional algorithm — and 
may soon be able to outperform human inspectors.
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